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Abstract We combine, within the Bohr Sommerfeld quantization rule, a system-
atic perturbation with asymptotic analysis of the action integral for potentials which
support a finite number of bound states with E < 0 to obtain an interpolation formula
for the energy eigenvalues. We find interpolation formulae for the Morse potential as

well as potentials of the form V = V0

[( a
x

)2k − ( a
x

)k]. For k = 6 i.e. the well known

Lennard Jones potential this yields results within 1 per cent of the highly accurate
numerical values. For the Morse potential this procedure yields the exact answer. We
find that the result for the Morse potential which approaches zero exponentially is the
k → ∞ limit of the Lennard Jones class of potentials.

Keywords Action integral · Perturbation theory · Asymptotic analysis ·
Interpolation formula · Morse potential · Lennard Jones potential

1 Introduction

It is quite common in quantum mechanics texts [1] to obtain the quantised energy lev-
els of certain canonical systems from the action angle quantization which is also the
Bohr Sommerfeld quantization condition [2]. This quantization scheme is successful
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in one dimension when the classical system shows a unique periodic orbit for a given
energy (an example of an exception is the double well potential which has two possi-
ble periodic orbits for energies below the unstable maximum of the potential and the
splitting of energy levels does not follow from the usual Bohr Sommerfeld Condition
[3]). Quantization of the action integral along the periodic orbit leads to the condition
(p is the momentum):

J (E) =
∮

p(x)dx = nh (1.1)

where n = 1, 2, . . . Using the WKB method it can be argued [4] that n should really be
n +α where α is a constant which for smooth potentials in one dimension turns out to
be 1/2. Then n = 0 can be included in the range of values of n. The potentials usually
studied using this technique are the infinite square well, simple harmonic oscillator
and the general class of oscillators with the potential V (x) = α|x |k, where k is an
integer. It was shown by Robinett [5] that perturbation theory can be carried out on
Eq. (1.1) and can yield almost trivially the correspondence principle limit of first order
perturbation theory. In spite of its simplicity the Bohr Sommerfeld technique remains a
popular area of investigation [6,7]. Recent works deal with a two dimensional electron
gas in a magnetic field [8] and issues related to 3-branes [9].

Our primary observation is that any potential V (x) with two turning points which
also possesses a minimum can be expanded about the same. If the minimum is at
x = x0 and V (x0) = V0 then the expansion will acquire the form

V (x) = V0 + 1

2
V ′′(x0)(x − x0)2 + 1

3! V ′′′(x0)(x − x0)3 + 1

4! V ′′′′(x0)(x − x0)4 + · · · · · ·

= V0 + 1

2
mω2(x − x0)2 + α

3
(x − x0)3 + β

4
(x − x0)4 + · · · (1.2)

where ω, α and β are easily identified.
With V (x) expanded as above it will be our aim to evaluate the action J (E) =∮
pdx which equals

∮ √
2m(E − V (x))dx , perturbatively about the quadratic term

and express it as a power series in α, β etc. Using Eq. 1.1 we can now obtain E as a
power series in α, β. . . We will see that for quite a few potentials the coefficients α, β

etc conspire to cause the perturbation theory to terminate and we get an exact answer.
Using the above perturbation theory, we will use the Bohr–Sommerfeld scheme

for molecular potentials (Morse potential [10,11], Lennard Jones potential [12–16]
etc) where a finite number of bound states exist to take care of the possibility of dis-
sociation. Given a potential which supports a finite number of bound states e.g. the
Lennard Jones class of potentials V = V0[

( a
x

)2k − ( a
x

)k] where V0 and a are con-
stants we evaluate the action integral by perturbation theory in the anharmonic terms
of Eq. (1.2). With E < 0 we next evaluate the action integral asymptotically for
E ≈ 0. This fixes the largest allowed value n0 of the quantum number. It also yields
the dependence of the energy eigenvalue on the quantum number for E ≈ 0. We
interpolate between the energy expression obtained from perturbation theory and the
expression that holds near n0 to arrive at a final expression for the energy eigenvalue.
For the Morse potential this actually yields the exact answer.
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In Sect. 2 we set up the basic perturbation theory. In Sect. 3 we treat the Morse
potential and in Sect. 4 we deal with the Lennard Jones class of potentials. A brief
summary is given in Sect. 5.

2 The perturbation theory

In this section we evaluate the action integral J for the basic anharmonic oscillator
having the potential V (x) = 1

2 mω2x2 + α
3 x3 + β

4 x4 using perturbation theory. This
requires a perturbative evaluation of the integral

J = 2
√

2m

ar∫

al

√
E − 1

2
mω2x2 − αx3

3
− βx4

4
. (2.1)

where al and ar are the left and right turning points respectively. Since the oscillations
are about the origin al < 0 and ar > 0. If the amplitude of motion is a (i.e. the kinetic
energy vanishes at a = 0), then

E = 1

2
mω2a2 + αa3

3
+ βa4

4
(2.2)

The left and right turning points are the negative and positive values of ‘a’ that satisfy
Eq. (2.2). Our first task is al and ar . To this end we expand

al,r = a0 + αa1 + α2a2 + βa′
1. (2.3)

Inserting in Eq. (2.2)

E = 1

2
mω2

[
a2

0 + 2αa1a0 + 2a0a2α
2 + a2

1α2 + 2a0a/
1β + · · ·

]

+α

3

[
a3

0 + 3αa2
0a1

]
+ β

4
a4

0 + · · ·

= 1

2
mω2a2

0 + α

[
mω2a0a1 + a3

0

3

]
+ α2

[
mω2a0a2 + 1

2
mω2a2

1 + a2
0a1

]

+β

[
mω2a0a′

1 + a4
0

4

]
+ · · · (2.4)
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Equating identical powers of α and β from either side of Eq. (2.4)

a2
0 = 2E

mω2 (2.5)

a1 = − a2
0

3mω2 (2.6)

a0a2 = 5

18

(
a2

0

mω2

)2

(2.7)

a/
1 = − a3

0

4mω2 (2.8)

There are two roots of a0 from Eq. (2.5), the positive corresponds to ar and the negative
to al . Accordingly, are can write down the perturbation expression for the two turning
points as

ar = |a0| − αa2
0

3mω2 + 5

18
α2

(
a2

0

mω2

)2
1

|a0| − β
|a0|3
4mω2 (2.9)

al = −|a0| − αa2
0

3mω2 − 5

18
α2

(
a2

0

mω2

)2
1

|a0| + β
|a0|3
4mω2 . (2.10)

Having found the turning points, we can now evaluate J in perturbation theory.
Accordingly, Eq (2.1) is written as

J = 2
√

2m

ar∫

al

√
1

2
mω2

(
a2 − x2

)+ α

3

(
a3 − x3

)+ β

4

(
a4 − x4

)

= 2mω

ar∫

al

√
a2 − x2

[
1 + α

3mω2

a3 − x3

a2 − x2 − 1

18

( α

mω2

)2
(

a3 − x3

a2 − x2

)2

+ β

4mω2

(
a2 + x2

)
+ · · ·

]
dx (2.11)

Now,

ar∫

al

√
a2 − x2dx =

0∫

al

√
a2

l − x2dx +
ar∫

0

√
a2

r − x2dx

= π

4

(
a2

l + a2
r

)

= π

4

⎡
⎣2a2

0 + 4

3
α2

(
a2

0

mω2

)2

− βa4
0 + · · ·

⎤
⎦ (2.12)
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Similarly,

ar∫

al

a3 − x3

√
a2 − x2

= α

3mω2

(
π

2
− 2

3

)(
a3

r − |al |3
)

= −2

3
α2

(
a2

0

mω2

)2 (
π

2
− 2

3

)
+ · · · (2.13)

Working to O(α2) and O(β) implies that the remaining integrals in Eq. (2.11) can
be evaluated from −|a0| to |a0| and thus

− 1

18

( α

mω2

)2
|a0|∫

−|a0|

(
a3

0 − x3
)2

(
a2

0 − x2
)3/2 = −a4

0

9

( α

mω2

)2
(

4 − 15π

16

)
(2.14)

and

β

4mω2

|a0|∫

−|a0|

√
a2

0 − x2
(

a2
0 + x2

)
dx = β

4mω2

5πa4
0

8
. (2.15)

Using Eq. (2.5) and putting together the results from Eq. (2.12) to Eq. (2.15) we
have

J = 2π E

ω
+ 5πα2

6m3ω7 E2 − 3πβ

4ω

E2

m2ω4 + · · · (2.16)

We now use the quantization condition J = nh and solve for E perturbatively by
expanding

E = E0 + αE1 + α2 E2 + βE/
2 + · · · (2.17)

Using the same steps as for the turning points, we get

E = nh̄ω − 5

12

α2

m3ω4 n2h̄2 + 3

8

β

m2ω2 n2h̄2 (2.18)

This is one of the central results which we will use later.

3 The Morse potential

The Morse potential, which describes the interaction between the neutral atoms of a
diatomic molecule is written as

V (x) = V0(e
−2ax − 2e−ax ) = −V0 + V0(1 − e−ax )2. (3.1)
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Fig. 1 Morse potential

The potential is shown in Fig. 1. Bound states are expected for E < 0. The mini-
mum of the potential is at x = 0 and we can expand the RHS of Eq. (3.1) about x = 0
to write

V (x) = −V0 + V0(ax)2
(

1 − ax + 7

12
a2x2 + · · ·

)
(3.2)

In Sect. 2 we considered the basic anharmonic oscillator.

V (x) = 1

2
mω2x2 + α

3
x3 + β

4
x4 + · · · (3.3)

Comparing Eq. (3.2) and (3.3) we note that apart from a shift of −V0 we can identify

ω2 = 2V0a2

m
, α = −3V0a3, β = 7V0a4

3
(3.4)

Using Eq. (2.18) we can write down the energy of the anharmonic oscillator to
O(α2) and O(β) using the identifications in Eq. (3.4) as

E ′ =
(

n + 1

2

)
h̄a

√
2V0

m
− 1

2
a2 (n + 1/2)2

m
h̄2 (3.5)

To get the full energy we need to add the shift −V0 and this gives the total energy as

E = −
[√

V0 −
(

n + 1

2

)
h̄a√
2m

]2

(3.6)

correct to this order in perturbation theory.
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We now turn to the asymptotic analysis i.e. the situation for E ≈ 0.
With the substitution e−ax = y the action integral becomes

J (E) = 2

y2∫

y1

1

y

√
2mV0

a2

(
E

V0
+ 2y − y2

)
dy (3.7)

where y1 and y2 are the zeroes of the integrand easily found to be

y1,2 = 1 ∓
√

1 + E

V0
(3.8)

Setting E = 0 yields n0 from J (0) = (
n0 + 1

2

)
h and from Eq. (3.7) we immedi-

ately see

n0 + 1

2
=
√

2mV0

a2h̄2 (3.9)

We note that this is the same result that one gets from the perturbation theory of
Eq. (3.6). We now need to explore the integral in Eq. (3.7) for E/V0 ≈ 0. Since E is
negative we write E/V0 = −ε(ε > 0) and note that for ε � 1

y1 ≈ ε

2
and y2 = 2 (3.10)

The primary contribution to the integral in Eq. (3.7) has to come from the region
y � 1, i.e. from the end y ≈ y1 and we need to focus on this end. We write Eq. (3.7)
and expand around ε = 0 as

J (E) = 2

√
2mV0

a2

2∫

ε/2

1

y

√
2y − y2 − εdy

= 2

√
2mV0

a2

⎛
⎜⎝

2∫

ε/2

1

y

√
2y − y2dy − ε

2

2∫

ε/2

1

y
√

2y − y2
dy + · · ·

⎞
⎟⎠

= 2

√
2mV0

a2

⎛
⎜⎝

2∫

0

√
2y − y2

y
dy −

ε/2∫

0

√
2y − y2

y
dy − ε

2

2∫

ε/2

1

y
√

2y − y2
dy

⎞
⎟⎠

=
(

n0 + 1

2

)
h − 2

√
2mV0

a2

⎛
⎜⎝

ε/2∫

0

√
2y − y2

y
dy + ε

2∫

ε/2

1

y
√

2y − y2
dy

⎞
⎟⎠

(3.11)
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Fig. 2 Lennard Jones potential

In evaluating the integrals in the parentheses in Eq. (3.10) our interest is in the range
y � 1 and hence y 	 y2. Dropping the y2 in the integrand shows that the leading
behaviour of both integrals is ε1/2 and thus, to the lowest order in ε, has the structure

J (E) =
(

n0 + 1

2

)
h − Cε1/2 + · · · (3.12)

where C is a numerical constant which we have not determined. Since J (E) =(
n + 1

2

)
h, Eq. (3.11) shows that for n ≈ n0,

E = −V0C2(n0 − n)2. (3.13)

This is the asymptotic form. Fortuitously the perturbation theory answer of Eq. (3.6)
has exactly this structure and thus the interpolation in this case is Eq. (3.6) itself. No
wonder that Eq. (3.6) is the exact answer for the Morse potential. In the next section
we will find that to match the perturbation theory and the asymptotic result for the
Lennard Jones potential, an interpolation formula will have to be constructed.

4 The Lennard Jones variety of potentials

In this section, we focus on the class of potentials

V (x) = Vo

[(a

x

)2k −
(a

x

)k
]

(4.1)

For k = 6, this gives the well known Lennard Jones potential, shown in Fig. 2.

123



J Math Chem (2012) 50:819–832 827

Table 1 Comparison of energy
eigenvalues obtained from
Eq. (4.5) with exact numerical
values

n 4E/V0 from Eq. (4.9)
x − (10−3)

4E/V0 exact.
x − (10−3)

0 941 941

1 830 830

2 728 728

3 636 634

4 551 548

5 477 470

10 239 186

Expanded about the minimum at x0 given by

2

(
a

x0

)k

= 1 (4.2)

the potential takes the form

V (x) = − V0

4
+ k2

4
V0

(
x − x0

x0

)2

− V0

4
k2(k + 1)

(
x − x0

x0

)3

+V0
k2(k + 1)(7k + 11)

48

(
x − x0

x0

)4

+ · · · (4.3)

which is an anharmonic oscillator of the type discussed in Sect. 2. Comparing the
structure of Eq. 4.3 with the anharmonic potential

V (x) = 1

2
mω2x2 + α

3
x3 + β

4
x4

we have

ω = k√
221/k

√
V0

ma2 , α = −3V0

4

k2(k + 1)

a223/k
, β = V0

12

k2(k + 1)(7k + 11)

a424/k
(4.4)

Using Eq. (2.18) and adding in the part − V0
4 to obtain the total energy, we have

4E

V0
= −1 + 4

(
n + 1

2

)
h̄ω

V0
− 2(2k + 1)(k + 1)

k2

[(
n + 1

2

)
h̄ω

V0

]2

+ · · · (4.5)

We can compare this result with the numerical values [17] given in literature for k = 6,
the Lennard Jones case. All the numerical results are for h̄ω

V0
= 0.03 and a comparison

between accurate numerical results and our perturbation formula is shown in Table 1.
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We notice that the accuracy starts deteriorating at n = 5, and the error is already
greater than 25% at n = 10. This indicated that an asymptotic analysis has to be
carried out.

We want to examine the asymptotic behavior of

J = 2

x2∫

x1

√
2m

{
E − V0

[(a

x

)2x −
(a

x

)k
]}

dx (4.6)

as we did for the Morse potential in Sect. 2 as E → 0. In Eq. (4.6), x1 and x2 and the
turning points of motion with x1 < x2 . Since E4 is negative, we let E/V0 = −ε(ε >

0) and substituting y = ( a
x

)k , we rewrite Eq. (4.6) as.

J = 2
√

2mV0α2

k

y2∫

y1

√
y − y2 − |ε| dy

y1+ 1
k

(4.7)

With the two turning points y1,2(y1 < y2) given by

y1,2 = 1

2

{
1 ∓ √

1 − 4ε
}

(4.8)

As ε → 0, y1 → ε and y2 → 1 and the integral of Eq. (4.7) diverges if k < 2
and is finite for k > 2. If the integral diverges, then the potential supports an infinite
number of bound states while a finite number implies a finite number of bound states.
Accordingly, we need to treat the two cases separately.

Case (A): k < 2
In this case, the integral in Eq. (4.7) diverges for ε → 0 and in extracting this divergent
behavior from Eq. (4.7) we can drop the y2 term in comparison to y. The integral is
thus approximated as

J ∼= 2

√
2mV0α2

k
|ε| 1

2 − 1
k

1/ε∫

1

√
z − 1

dz

z1+1/k
(4.9)

Since ε → 0 we can set the upper limit equal to infinity and thus get

J ∼=
√

2πV0α2

k

�
( 1

k − 1
2

)

�
( 1

k + 1
) ε 1

2 − 1
k (4.10)

For k < 2, this is the dominant contribution to J as ε → 0. Using the Bohr Sommerfeld
quatization condition, we have for ε → 0,

∣∣∣∣
4E

V0

∣∣∣∣
1
2 − 1

k = 22− 1
k
√

π
�
(
1 + 1

k

)

�
( 1

k − 1
2

)
(

n + 1

2

)
h̄ω

V0
(4.11)
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Thus for nhω
V0

	 1, we have Eq. (4.11) and for nhω
V0

� 1, we have Eq. (4.5). The
simplest formula connecting both ends is

4E

V0
= − 1

{
1 + 22− 1

k

√
π�
(

1+ 1
k

)

�
(

1
k − 1

2

) (
n + 1

2

) h̄ω
V0

} 2k
2−k

(4.12)

For k = 1 in particular

4E

V0
= − 1[

1 + (2n + 1) h̄ω
V0

]2 (4.13)

which exactly reproduces Eq. (4.5) on expansion. In this case the integral for J can be
exactly evaluated and Eq. (4.13) is the exact answer. For other values of k, a simple
formula like the one of Eq. (4.12) would not be adequate since on expanding, even
the first term in

(
n + 1

2

) h̄ω
V0

is not correctly reproduced. We do not concern ourselves
with this any more but rather turn our attention to k > 2, i.e. the situation where a
finite number of bound states exist.

Case (B): k > 2
We return to Eq. (4.7) and examine it for ε → 0 for k > 2. we note that for ε = 0,
the integral has a finite value which will clearly be the leading term of J . This finite
value, J0, is found as

J0 = 2

√
2mV0a2

k
.

1∫

0

√
y(1 − y).

dy

y1+ 1
k

=
√

π

21/k
.
�
( 1

2 − 1
k

)

�
(
2 − 1

k

) V0

ω
(4.14)

This immediately yields the value n0 of n for which ε = 0 since J0 = (no + 1
2

)
h.

To find the correction to J0 for ε � 1 we proceed exactly as in Sect. 3 (see
Eq. (3.10)). The turning points for ε � 1 are y1 ≈ ε and y2 ≈ 1 and we can expand
the integral in Eq. (4.7) as

I =
1∫

ε

√
y − y2 − ε

y1+1/k
dy

=
1∫

0

√
y − y2

y1+1/k
dy −

ε∫

0

√
y − y2

y1+1/k
dy − ε

1∫

ε

1√
y − y2

(
y1+1/k

)dy (4.15)
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Since the dominant part of I comes from the region y � 1 for ε � 1 one can drop
the y2 in comparison with y in the last two terms and find

I = I0 − I1ε
1/2−1/k + · · · (4.16)

We thus arrive at

J = J0 − Cε1/2−1/k + · · · (4.17)

where C is a constant which we have not tried to determine.
We now have the following facts :

(i) for
(
n + 1

2

) h̄ω
V � 1, the perturbation expansion of Eq. (4.5)

(ii) E = 0 at n = n0 such that

n0 + 1

2
= 1

21+1/k
√

π

�
( 1

2 − 1
k

)

�
(
2 − 1

k

) V0

h̄ω
(4.18)

(iii) near n0, E vanishes as (n0 − n)2k/k−2.

We now propose the interpolation formula

4E

V0
= −

(
1 − n+1/2

n0+1/2

)2k/k−2

1 + α(n + 1/2) + β(n + 1/2)2 (4.19)

where the parameters α and β are to be obtained from the condition that the pertur-
bation expansion of Eq. (4.5) is reproduced when Eq. (4.19) is expanded in powers of
(n + 1/2). This leads to

α + 2k

k − 2

1

n0 + 1/2
= 4h̄ω

V0
(4.20a)

α2 − β + 2αk

k − 2

1

n0 + 1/2
+ k(k + 2)

(k − 2)2

(
1

n0 + 1/2

)2

= (2k + 1)(2k + 2)

k2

(
h̄ω

V0

)2

(4.20b)

To compare with numerical results we choose the most popular situation of k = 6
(Lennard Jones potential). Extensive numerical results exist for h̄ω/V0 = 0.03 for
which we get, α = −0.00605 and β = 2.7 × 10−5 from Eqs. 4.20a, and 4.20b. The
resulting values of 4E/V0 are shown in Table 2 where the exact numerical values are
also exhibited.

The agreement is to within 0.1%, which is a significant fact for an analysis which
is so straightforward.

We end this paper by noting a curious phenomenon. If k → ∞ then Eq. (4.18) gives
n0 + 1

2 = V0
2h̄ω

and now from Eqs. 4.20a, and 4.20b we find that α = β = 0 in the limit
k → ∞. The energy of Eq. (4.19) is the same as the energy of the Morse potential, as
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Table 2 Comparison of energy
eigenvalues obtained from
Eq. (4.19) with exact numerical
values

n E (Exact numerical)
X − (10−5)

E (Fitting formula)
X − (10−5)

0 94104 94113

1 83000 83007

1 72764 72770

3 63369 63373

4 54785 54788

5 46982 46984

6 39930 39932

7 33596 33598

8 27947 27950

9 22951 22954

10 18572 18576

11 14775 14779

12 11523 11526

13 08777 08779

14 06498 06500

15 04647 04647

16 03181 03180

17 02059 02055

18 01235 01231

19 00666 00661

20 00305 00300

21 00105 00102

22 00019 00019

23 00000 (to given accuracy) 00000 (to given accuracy)

in Eq. (3.6). Since the Morse potential approaches zero exponentially fast, it can be
thought of as a k → ∞ limit of a power law potential.

5 Conclusion

It is the simplicity of the Bohr Sommerfeld quantization scheme that has kept it pop-
ular [18,19] even now. We have shown that this condition can be effectively used
for a wide variety of potentials where it has not traditionally been applied. There are
two essential ingredients in our calculation. The first is the expansion of the potential
about its minimum. This expression gives an anharmonic oscillator and treating the
anharmonic terms as perturbation we can find a perturbative form for the energy. The
perturbation technique works well if the energy is close to a minimum. It needs to be
supplemented by an analysis which holds near the maximum bound state energy. If
the maximum possible value of the bound state energy is Emax then the action can be
evaluated at E = Emax and this allows us to get the highest possible quantum num-
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ber nmax. Calculation of the energy near nmax can be combined with the perturbation
expansion in a Pade type interpolation formula to yield an effective expression for the
energy. This is what happened here. We have done it for the Morse potential and the
Lennard Jones class of potentials. While we have not shown it here, the perturbation
theory developed here gives exact answers for the Pöschel Teller and the Rosen Morse
[20] potentials as well.
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